Category Archives: Infrastructure

What is Azure Automation?

So, what do you know about Azure Automation? In this post, I’ll fill you in on this cool, cloud-based automation service that provides you the ability to configure process automation, update management and system configuration, which is managed across your on-premises resources, as well as your Azure cloud-based resources.

Azure Automation provides complete control of deployment operation and decommissions of workloads and resources for your hybrid environment. So, we can have a single pane of glass for managing all our resources through automation.

Some features I’d like to point out are:

  • It allows you to automate those mundane, error-prone activities that you perform as part of your system configuration and maintenance.
  • You can create Notebooks in PowerShell or Python that help you reduce the chance for misconfiguration errors. And it will help lower operational costs for the maintenance of those systems, as you can script it out to do it when you need instead of manually.
  • The Notebooks can be developed for on-premises or Azure resources and they use Web Hooks that allow you to trigger automation from things such as ITSM, Dev Ops and monitoring systems. So, you can run these remotely and trigger them from wherever you need to.
  • On configuration management side, you can build these desired state configurations for your enterprise environment. This will help you to set a baseline for how your systems will operate and will identify when there’s a variance from the initial system configuration, alerting you of any anomalies that could be problematic.
  • It has a rich reporting back end and alerting interface for full visibility into what’s happening in your Windows and Linux systems – on-premises and in Azure.
  • Gives you update management aspects (in Windows and Linux) to help you define the aspects of how updates are applied, and it helps administrators to specify which updates will be deployed, as well as successful or unsuccessful deployments and the ability to specify which updates should not be deployed to systems, all done through PowerShell or Python scripts.
  • It can share capabilities, so when you’re using multiple resources or building those Notebooks for automation, it allows you to share the resources to simplify management. You can build multiple scripts but use the same resources over and over as references for things like role-based access control, variables, credentials, certificates, connections, schedules and access to source control and PowerShell modules. You can check these in and out of source control like any kind of code-based project.
  • Lastly, and one of the coolest features in my opinion, where these are templates you’re deploying out in your systems, everyone has some similar challenges. There’s a community gallery where you can go and download templates others have created or upload ones you’ve created to share. With a few basic configuration tweaks and review to make sure they’re secure, this is a great option for making the process faster by finding an existing script and cleaning it up and deploying it in your systems and environment.

So, there’s a lot you can do with this service and I think it’s worth checking out as it can make your maintenance and management much simpler.

What is Azure Firewall?

I’d like to discuss the recently announced Azure Firewall service that is now just released in GA. Azure Firewall is a managed, cloud-based network security service that protects your Azure Virtual Network resources. It is a fully stateful PaaS firewall with built-in high availability and unrestricted cloud scalability.

It’s in the cloud and Azure ecosystem and it has some of that built-in capability. With Azure Firewall you can centrally create, enforce and log application and network connectivity policies across subscriptions and virtual networks, giving you a lot of flexibility.

It is also fully integrated with Azure Monitor for log analytics. That’s big because a lot of firewalls are not fully integrated with log analytics which means you can’t centralize these logs in OMS, for instance, which would give you a great platform in a single pane of glass for monitoring many of the technologies being used in Azure.

Some of the features within:

  • Built in high availability, so there’s no additional load balances that need to be built and nothing to configure.
  • Unrestricted cloud scalability. It can scale up as much as you need to accommodate changing network traffic flows – no need to budget for your peak traffic, it will accommodate any peaks or valleys automatically.
  • It has application FQDN filtering rules. You can limit outbound HTTP/S traffic to specified lists of fully qualified domain names including wildcards. And the feature does not require SSL termination.
  • There are network traffic filtering rules, so you can create, allow or deny network filtering rules by source and destination IP address, port and protocol. Those rules are enforced and logged across multiple subscriptions and virtual networks. This is another great example of having availability and elasticity to be able to manage many components at one time.
  • It has fully qualified domain name tagging. If you’re running Windows updates across multiple servers, you can tag that service as an allowed service to come through and then it becomes a set standard for all your services behind that firewall.
  • Outbound SNAT and inbound DNAT support, so you can identify and allow traffic originating from your virtual network to remote Internet destinations, as well as inbound network traffic to your firewall public IP address is translated (Destination Network Address Translation) and filtered to the private IP addresses on your virtual networks.
  • That integration with Azure Monitor that I mentioned in which all events are integrated with Azure Monitor, allowing you to archive logs to a storage account, stream events to your Event Hub, or send them to Log Analytics.

Another nice thing to note is when you set up an express route or a VPN from your on premises environment to Azure, you can use this as your single firewall for all those virtual networks and allow traffic in and out from there and monitor it all from that single place.

This was just released in GA so there are a few hiccups, but if none of the service challenges effect you, I suggest you give it a try. It will only continue to come along and get better as with all the Azure services. I think it’s going to be a great firewall service option for many.

What is Azure Data Box and Data Box Disk?

Are you looking to move large amounts of data into Azure? How does doing it for free sound and with an easier process? Today I’m here to tell you how to do just that with the Azure Data Box.

Picture this: you have a ton of data, let’s say 50 terabytes on-prem, and you need to get that into Azure because you’re going to start doing incremental back ups of a SQL Database, for instance. You have two options to get this done.

First option is to move that data manually. Which means you have to chunk it, set it up using AZ copy or a similar Azure data tool, put it up in a blob storage, then extract it and continue with the process. Sounds pretty painful, right?

Your second option is to use Azure Data Box which allows you to move large chunks of data up into Azure. Here’s how simple it is:

  • You order the Data Box through Azure (currently available in the US and EU)
  • Once received, you connect it to your environment however you plan to move that data
  • It uses standard protocols like SMB and CIFS
  • You copy the data you want to move and return the Data Box back to Azure and then they will upload the data into your storage container(s)
  • Once the data is uploaded, they will securely erase that Data Box

With the Data Box you get:

  • 256-bit encryption
  • A super tough, hardened box that can withstand drops or water, etc.
  • It can be pushed into Azure Blob
  • You can copy data up to 10 storage accounts
  • There are two 1 gigabit/second and two 10 gigabit/second connections to allow quick movement of data off your network onto the box

In addition, Microsoft has recently announced the Data Box Disk, which is a small 8 terabyte disk that you can order up to five of as part of the Data Box Disk.

With Data Box Disc you get:

  • 35 terabytes of usable capacity per order
  • Supports Azure Blobs
  • A USB SATA 2 and 3 interface
  • Uses 128-bit encryption
  • Like Data Box, it’s a simple process to connect it, unlock it, copy the data onto the disk and it send it back to copy those into a single storage account for you

Here comes the best part—while Azure Data Box and Data Box Disk are in Preview, this is a free service. Yes, you heard it right, Microsoft will send you the Data Box or Data Box Disk for free and you can move your data up into Azure for no cost.

Sure, it will cost you money when you buy your storage account and start storing large sums of data, but storage is cheap in Azure, so that won’t break the bank.

 

What is Azure Virtual WAN?

In today’s post I’d like to talk about site to site networking service. Azure already has a site to site VPN service, but the Azure Virtual WAN is a newer service currently in Preview. This networking service is optimized for branch to service connectivity and offers the capability to use partner devices currently supplied by preferred partners (currently Riverbed and Cisco) or the ability to manually configure this connectivity with your environment.

Azure Virtual WAN has some big differences to consider:

  • Automated set up and configuration of these devices by preferred partners makes much easier to configure them. You simply set up these connections which you can export directly from the device into Azure and it automatically sets it up for you.
  • It is designed for large scalability and more through-put. The site to site service is great for smaller workloads but this new service opens the pipe and allows the data to crank through much faster.
  • It’s designed as a Hub and Spoke model. The Hub being Azure and the Spoke being your branch office – all managed within Azure.

Let’s look at the 4 main components of this service:

  • The Virtual WAN Service itself – This asset is where the resources are collected, and it represents a virtual overlay of the Azure network. Think of it as a top down view of the connectivity between all the components in Azure and in your offices.
  • A site represents the on premises VPN device and its settings. I mentioned those preferred devices from Riverbed and Sysco (with more to come) and if you’re using a supported device, you can easily drop that configuration into Azure.
  • The hub is the connection point in Azure for those sites. The site connects to the hub and the virtual WAN is overlooking all of these components.
  • The hub virtual network connection allows your connection point for your hub to your virtual network.

So, your hub and your virtual network are connected through that virtual network connection. This allows the communication between your virtual networks in Azure and your site to site virtual WAN.

This offering makes the landscape a bit different with how people are doing connectivity into Azure and connecting their remote offices by consolidating what that network looks like, as well as making it easier by offering these preferred devices.

Again, this is still in Preview but definitely something I would suggest checking out.